Fluent Bit: Official Manual
SlackGitHubCommunity MeetingsSandbox and LabsWebinars
2.2
2.2
  • Fluent Bit v2.2 Documentation
  • About
    • What is Fluent Bit?
    • A Brief History of Fluent Bit
    • Fluentd & Fluent Bit
    • License
  • Concepts
    • Key Concepts
    • Buffering
    • Data Pipeline
      • Input
      • Parser
      • Filter
      • Buffer
      • Router
      • Output
  • Installation
    • Getting Started with Fluent Bit
    • Upgrade Notes
    • Supported Platforms
    • Requirements
    • Sources
      • Download Source Code
      • Build and Install
      • Build with Static Configuration
    • Linux Packages
      • Amazon Linux
      • Redhat / CentOS
      • Debian
      • Ubuntu
      • Raspbian / Raspberry Pi
    • Docker
    • Containers on AWS
    • Amazon EC2
    • Kubernetes
    • macOS
    • Windows
    • Yocto / Embedded Linux
  • Administration
    • Configuring Fluent Bit
      • Classic mode
        • Format and Schema
        • Configuration File
        • Variables
        • Commands
        • Upstream Servers
        • Record Accessor
      • YAML Configuration
        • Configuration File
      • Unit Sizes
      • Multiline Parsing
    • Transport Security
    • Buffering & Storage
    • Backpressure
    • Scheduling and Retries
    • Networking
    • Memory Management
    • Monitoring
    • HTTP Proxy
    • Hot Reload
    • Troubleshooting
  • Local Testing
    • Validating your Data and Structure
    • Running a Logging Pipeline Locally
  • Data Pipeline
    • Pipeline Monitoring
    • Inputs
      • Collectd
      • CPU Log Based Metrics
      • Disk I/O Log Based Metrics
      • Docker Log Based Metrics
      • Docker Events
      • Dummy
      • Elasticsearch
      • Exec
      • Exec Wasi
      • Fluent Bit Metrics
      • Forward
      • Head
      • HTTP
      • Health
      • Kafka
      • Kernel Logs
      • Kubernetes Events
      • Memory Metrics
      • MQTT
      • Network I/O Log Based Metrics
      • NGINX Exporter Metrics
      • Node Exporter Metrics
      • Podman Metrics
      • Process Log Based Metrics
      • Process Exporter Metrics
      • Prometheus Scrape Metrics
      • Random
      • Serial Interface
      • Splunk
      • Standard Input
      • StatsD
      • Syslog
      • Systemd
      • Tail
      • TCP
      • Thermal
      • UDP
      • OpenTelemetry
      • Windows Event Log
      • Windows Event Log (winevtlog)
      • Windows Exporter Metrics
    • Parsers
      • Configuring Parser
      • JSON
      • Regular Expression
      • LTSV
      • Logfmt
      • Decoders
    • Filters
      • AWS Metadata
      • CheckList
      • ECS Metadata
      • Expect
      • GeoIP2 Filter
      • Grep
      • Kubernetes
      • Log to Metrics
      • Lua
      • Parser
      • Record Modifier
      • Modify
      • Multiline
      • Nest
      • Nightfall
      • Rewrite Tag
      • Standard Output
      • Sysinfo
      • Throttle
      • Type Converter
      • Tensorflow
      • Wasm
    • Outputs
      • Amazon CloudWatch
      • Amazon Kinesis Data Firehose
      • Amazon Kinesis Data Streams
      • Amazon S3
      • Azure Blob
      • Azure Data Explorer
      • Azure Log Analytics
      • Azure Logs Ingestion API
      • Counter
      • Datadog
      • Elasticsearch
      • File
      • FlowCounter
      • Forward
      • GELF
      • Google Chronicle
      • Google Cloud BigQuery
      • HTTP
      • InfluxDB
      • Kafka
      • Kafka REST Proxy
      • LogDNA
      • Loki
      • NATS
      • New Relic
      • NULL
      • Observe
      • Oracle Log Analytics
      • OpenSearch
      • OpenTelemetry
      • PostgreSQL
      • Prometheus Exporter
      • Prometheus Remote Write
      • SkyWalking
      • Slack
      • Splunk
      • Stackdriver
      • Standard Output
      • Syslog
      • TCP & TLS
      • Treasure Data
      • Vivo Exporter
      • WebSocket
  • Stream Processing
    • Introduction to Stream Processing
    • Overview
    • Changelog
    • Getting Started
      • Fluent Bit + SQL
      • Check Keys and NULL values
      • Hands On! 101
  • Fluent Bit for Developers
    • C Library API
    • Ingest Records Manually
    • Golang Output Plugins
    • WASM Filter Plugins
    • WASM Input Plugins
    • Developer guide for beginners on contributing to Fluent Bit
Powered by GitBook
On this page
  • Tensorflow
  • Configuration Parameters
  • Creating Tensorflow Lite shared library
  • Building Fluent Bit with Tensorflow filter plugin
  • Limitations

Was this helpful?

Export as PDF
  1. Data Pipeline
  2. Filters

Tensorflow

Last updated 1 year ago

Was this helpful?

Tensorflow

Tensorflow Filter allows running Machine Learning inference tasks on the records of data coming from input plugins or stream processor. This filter uses as the inference engine, and requires Tensorflow Lite shared library to be present during build and at runtime.

Tensorflow Lite is a lightweight open-source deep learning framework that is used for mobile and IoT applications. Tensorflow Lite only handles inference (not training), therefore, it loads pre-trained models (.tflite files) that are converted into Tensorflow Lite format (FlatBuffer). You can read more on converting Tensorflow models

Configuration Parameters

The plugin supports the following configuration parameters:

Key
Description
Default

input_field

Specify the name of the field in the record to apply inference on.

model_file

Path to the model file (.tflite) to be loaded by Tensorflow Lite.

include_input_fields

Include all input filed in filter's output

True

normalization_value

Divide input values to normalization_value

Creating Tensorflow Lite shared library

Clone , install bazel package manager, and run the following command in order to create the shared library:

$ bazel build -c opt //tensorflow/lite/c:tensorflowlite_c  # see https://github.com/tensorflow/tensorflow/tree/master/tensorflow/lite/c

The script creates the shared library bazel-bin/tensorflow/lite/c/libtensorflowlite_c.so. You need to copy the library to a location (such as /usr/lib) that can be used by Fluent Bit.

Building Fluent Bit with Tensorflow filter plugin

Tensorflow filter plugin is disabled by default. You need to build Fluent Bit with Tensorflow plugin enabled. In addition, it requires access to Tensorflow Lite header files to compile. Therefore, you also need to pass the address of the Tensorflow source code on your machine to the :

cmake -DFLB_FILTER_TENSORFLOW=On -DTensorflow_DIR=<AddressOfTensorflowSourceCode> ...

Command line

If Tensorflow plugin initializes correctly, it reports successful creation of the interpreter, and prints a summary of model's input/output types and dimensions.

$ bin/fluent-bit -i mqtt -p 'tag=mqtt.data' -F tensorflow -m '*' -p 'input_field=image' -p 'model_file=/home/user/model.tflite' -p 'include_input_fields=false' -p 'normalization_value=255' -o stdout
[2020/08/04 20:00:00] [ info] Tensorflow Lite interpreter created!
[2020/08/04 20:00:00] [ info] [tensorflow] ===== input #1 =====
[2020/08/04 20:00:00] [ info] [tensorflow] type: FLOAT32  dimensions: {1, 224, 224, 3}
[2020/08/04 20:00:00] [ info] [tensorflow] ===== output #1 ====
[2020/08/04 20:00:00] [ info] [tensorflow] type: FLOAT32  dimensions: {1, 2}

Configuration File

[SERVICE]
    Flush        1
    Daemon       Off
    Log_Level    info

[INPUT]
    Name mqtt
    Tag mqtt.data

[FILTER]
    Name tensorflow
    Match mqtt.data
    input_field image
    model_file /home/m/model.tflite
    include_input_fields false
    normalization_value 255

[OUTPUT]
    Name stdout
    Match *

Limitations

  1. Currently supports single-input models

  2. Uses Tensorflow 2.3 header files

Tensorflow Lite
here
Tensorflow repository
build script